

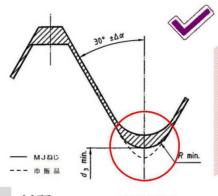
"Ultra-High tension" socket head cap screw

"超強度"六角穴付ボル

高い技術力を誇る一流ボルトメーカー・㈱極東製作所製。「14.9」の強度を誇る六角穴付ボルトが新たに登場!!

「耐遅れ破壊特性」に優れた高強度ボルト用鋼を採用し、 引張強度 1,400N/mdを誇りながら 9%以上の伸びを実現。

航空宇宙用「MJねじ」の採用により耐疲労性を向上。 「超強度」がメンテナンスにおける問題を解決します。


1 遅れ破壊による危険性の改善

21 耐疲労性の向上によるロングライフ化

サイズダウンによる設計のコンパクト化

4 締結力の向上による緩みの防止

【MJねじとは?】

航空宇宙用規格として存在する「MJ規格」は通常規格と比べねじ部の谷底が浅く、谷底のRが大きくなっており、有効径が太くなることによる耐疲労性の向上が図られております。

材質 : KNDS4 (㈱神戸製鋼所製 高強度ボルト用鋼)

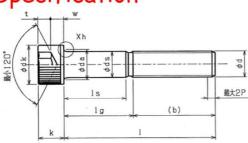
硬度 : HRC44~50 引張強度 : 1,400N/mm

強度クラス : 14.9

伸び : 9%min (強度区分10.9と同等) 寸法規格 : JIS B1176 ※首裏Rを除く

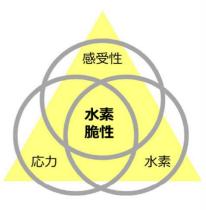
ねじ種類 : ISO 5855-1 のMJねじ (航空宇宙用) ねじ等級 : ISO 5855-1 に基づく 4g6g

▼在庫範囲表


▼ II/∓∓6⊠3X									
	M6	M8	M10	M12					
10	•								
12	•	•							
15	•	•	•						
16	•	•	•						
20	•	•	•	•					
25	•	•	•	•					
30	•	•	•	•					
35	0	•	•	•					
40	0	0	•	•					
45	0	0	0	•					
50	0	0	0	•					
55		0	0	0					
60		0	0	0					
65		0	0	0					
70		0	0	0					
75			0	0					
80			0	0					
90			0	0					
100			0	0					
110				0					
120				0					
W - 1+4	2401"	01+14	101"						

※●は全ねじ、○は半ねじ

Specification



[CAUTION]

水素脆性は「感受性」「応力」「水素」の 三つの要素が重なると生じます。このうち いずれか一つの要素が欠ければ水素脆性の 発生を避けられます。

当製品は水素脆化感受性を低く抑えるよう 設計された材料を使用しておりますが、基 本的には三要素が重ならない様に最大限の 注意を払い使用することが求められます。

水蒸気や結露等で錆の発生が起こりやすい 環境や、水素を発生するガス等の雰囲気内 でのご使用は極力お避け下さい。

▼15件、分法

▼形状・寸法								
ST.	75	M6	M8	M10	M12			
SIZE		P1.0	P1.25	P1.5	P1.75			
dk	Max	10.22	13.27	16.27	18.27			
uĸ	Min	9.78	12.73	15.73	17.73			
da	Max	6.80	9.20	11.20	14.20			
ds	Max	6.00	8.00	10.00	12.00			
us	Min	5.82	7.78	9.78	11.73			
е	Min	5.723	6.863	9.149	11.429			
k	Max 6.00		8.00	10.00	12.00			
K	Min	5.70	7.64	9.64	11.57			
r	Min	0.3	0.4	0.4	0.6			
	Max	5.095	6.095	8.115	10.115			
S	Min	5.02	6.02	8.025	10.025			
t	Min	3.00	4.00	5.00	6.00			

▼公差等級 MJ - 4g6g の許容限界寸法及び公差

	W 1.12	TOO ON LIMIT JAKO AZ						
SIZE		M6	M8	M10	M12			
		P1.0	P1.25	P1.5	P1.75			
外径	Max	5.974	7.972	9.968	11.966			
プト任宝	Min	5.794	7.760	9.732	11.701			
有効径	Max	5.324	7.160	8.994	10.829			
有劝任	Min	5.253	7.085	8.909	10.734			
谷径	Max	4.819	6.529	8.236	9.945			
甘笙	Min	4.687	6.378	8.060	9.744			
谷底	Max	0.180	0.226	0.271	0.316			
丸み	Min	0.150	0.188	0.225	0.263			

※MJ規格は一般規格より有効径が大きいため、相手側の公差が厳しい条件 下でご使用される場合は、あらかじめ勘合する相手側の寸法公差をご確認 いただくか又はサンプルによる勘合試験をお薦めします。

(JIS一般規格品であれば問題ありません)

▼スペック比較

グレード	8.8	10.9	12.9	14.9
引張強度 (N/㎜)	800	1,000	1,200	1,400
耐力 (N/mi)	640	900	1,080	1,260
保証荷重 (N/ml)	580	830	970	1,120
伸び	10%	9%	8%	9%

▼最小引張荷重及び保証荷重比較

	有効断面積	最小	引張荷重(kN)	保証荷重(kN)		
	(mil)	10.9	12.9	14.9	10.9	12.9	14.9
M6	20.1	20.9	24.5	28.1	16.7	19.5	22.5
M8	36.6	38.1	44.6	51.2	30.4	35.5	41.0
M10	58.0	60.3	70.8	81.2	48.1	56.3	65.0
M12	84.3	87.7	103	118	70.0	81.8	94.4

■KNDS4とは

【KNDS4】は自動車用ボルトの使用環境を想定し、水中方式及び 酸大気方式の遅れ破壊試験の両方の方式で評価された「耐遅れ 破壊性」に優れた鋼です。

耐遅れ破壊特性の改善を目的とし

- ①侵入水素の低減
- ② 水素のトラップサイトの増加
- ③限界拡散性水素量の向上

を図った鋼種設計がされております。

▼締付	▼締付力及びトルク比較 (参考値)									
	有効断面積	締付力(kN)※			トルク(Nm)※					
	(må)	10.9	12.9	14.9	10.9	12.9	14.9			
M6	20.1	13.2	15.4	17.7	13.4	15.8	18.1			
M8	36.6	24.0	28.1	32.3	32.6	38.3	43.9			
M10	58.0	38.0	44.6	51.2	64.6	75.8	87.0			
M12	84.3	55.2	64.8	74.4	112.7	132.0	151.7			

締付に際しては軸力管理、トルク管理を十分に行ってください。 ※上記は参考値です。ご使用にあたってはJIS B1083等を参照して、適正締付トルクを求めて下さい。

※トルク(T)=KdF 、 K=トルク係数(0.17)、d=呼び径、F=降伏荷重の70%

■KNDS4の代表化学成分の一例

		167, 15 A 1600 A 17							低減	添加
4回1乗	代表化学成分 (mass%)									
鋼種	С	Si	Mn	Р	S	Ni	Cr	Мо	Ti	٧
KNDS4	0.40	0.05	0.50	0.010 以下	0.010 以下	0.55	1.00	1.00	0.05	0.07

ねじで繋ぐ絆 3

ねじコンシェル。com 運営:

藤本産業株式会社 **T578-0957**

東大阪市本庄中2丁目3-6 TEL:06-6747-0234

FAX:06-6747-5894